Mechanical Properties of Robocast Glass Scaffolds Assessed through Micro-CT-Based Finite Element Models

Author:

D’Andrea LucaORCID,Gastaldi DarioORCID,Verné EnricaORCID,Baino FrancescoORCID,Massera JonathanORCID,Örlygsson GissurORCID,Vena PasqualeORCID

Abstract

In this study, the mechanical properties of two classes of robocast glass scaffolds are obtained through Computed micro-Tomography (micro-CT) based Finite Element Modeling (FEM) with the specific purpose to explicitly account for the geometrical defects introduced during manufacturing. Both classes demonstrate a fiber distribution along two perpendicular directions on parallel layers with a 90∘ tilting between two adjacent layers. The crack pattern identified upon compression loading is consistent with that found in experimental studies available in literature. The finite element models have demonstrated that the effect of imperfections on elastic and strength properties may be substantial, depending on the specific type of defect identified in the scaffolds. In particular, micro-porosity, fiber length interruption and fiber detaching were found as key factors. The micro-pores act as stress concentrators promoting fracture initiation and propagation, while fiber detachment reduces the scaffold properties substantially along the direction perpendicular to the fiber plane.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3