Effects of Mono-Vacancies and Co-Vacancies of Nitrogen and Boron on the Energetics and Electronic Properties of Heterobilayer h-BN/graphene

Author:

Jiménez Gladys Casiano,Morinson-Negrete Juan DavidORCID,Blanquicett Franklin Peniche,Ortega-López César,Espitia-Rico Miguel J.ORCID

Abstract

A study is carried out which investigates the effects of the mono-vacancies of boron (VB) and nitrogen (VN) and the co-vacancies of nitrogen (N), and boron (B) on the energetics and the structural, electronic, and magnetic properties of an h-BN/graphene heterobilayer using first-principles calculations within the framework of the density functional theory (DFT). The heterobilayer is modelled using the periodic slab scheme. In the present case, a 4 × 4-(h-BN) monolayer is coupled to a 4 × 4-graphene monolayer, with a mismatch of 1.40%. In this coupling, the surface of interest is the 4 × 4-(h-BN) monolayer; the 4 × 4-graphene only represents the substrate that supports the 4 × 4-(h-BN) monolayer. From the calculations of the energy of formation of the 4 × 4-(h-BN)/4 × 4-graphene heterobilayer, with and without defects, it is established that, in both cases, the heterobilayers are energetically stable, from which it is inferred that these heterobilayers can be grown in the experiment. The formation of a mono-vacancy of boron (1 VB), a mono-vacancy of nitrogen (1 VN), and co-vacancies of boron and nitrogen (VBN) induce, on the structural level: (a) for 1 VB, a contraction n of the B-N bond lengths of ~2.46% and a slight change in the interfacial distance D (~0.096%) with respect to the heterobilayer free of defects (FD) are observed; (b) for 1 VN, a slight contraction of the B-N of bond lengths of ~0.67% and an approach between the h-BN monolayer and the graphene of ~3.83% with respect to the FD heterobilayer are observed; (c) for VBN, it can be seen that the N-N and B-B bond lengths (in the 1 VB and 1 VN regions, respectively) undergo an increase of ~2.00% and a decrease of ~3.83%, respectively. The calculations of the Löwdin charge for the FD heterobilayer and for those with defects (1 VB, 1 VN, and VBN) show that the inclusion of this type of defect induces significant changes in the Löwdin charge redistribution of the neighboring atoms of VB and VN, causing chemically active regions that could favor the interaction of the heterobilayer with external atoms and/or molecules. On the basis of an analysis of the densities of states and the band structures, it is established that the heterobilayer with 1 VB and VBN take on a half-metallic and magnetic behavior. Due to all of these properties, the FD heterobilayer and those with 1 VB, 1 VN, and VBN are candidates for possible adsorbent materials and possible materials that could be used for different spintronic applications.

Funder

University of Córdoba

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3