Impedance Spectroscopy of Pr-Doped BaBi2Nb2O9 Aurivillius Ceramics

Author:

Rerak Michał,Makowska Jolanta,Adamczyk-Habrajska MałgorzataORCID,Kozielski LucjanORCID

Abstract

Herein this study, the polycrystalline nature of the Aurivillius type structure is studied; primarily, the main objective is to observe the influence of dopant Pr3+ at the Ba2+-site of BaBi2Nb2O9 (BBN) ceramics. The ceramics under investigation were fabricated via the conventional solid-state reaction method. Scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) techniques were used to analyse their morphological structure. It was found that the chemical composition of the ceramic samples corresponds well to the initial stoichiometry of the ceramic powders. An increase in praseodymium content caused a slight decrease in the average size of the ceramic grains. The obtained ceramic materials are described by a tetragonal structure with the space group I4/mmm. The electrical properties of the material have been studied using complex impedance spectroscopy methods in wide temperature and frequency ranges. The analysis of obtained results showed grains and grain boundaries contribute to conductive processes in the material. A possible ’hopping’ mechanism for electrical transport processes in the system is evident from the analysis of results based on Joncher law.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3