Asynchronous Gathering in a Dangerous Ring

Author:

Dobrev Stefan1,Flocchini Paola2ORCID,Prencipe Giuseppe3ORCID,Santoro Nicola4ORCID

Affiliation:

1. Informatics Department, Slovak Academy of Science, 841 04 Bratislava, Slovakia

2. School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada

3. Dipartimento di Informatica, Università di Pisa, 56127 Pisa, Italy

4. School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada

Abstract

Consider a set of k identical asynchronous mobile agents located in an anonymous ring of n nodes. The classical Gather (or Rendezvous) problem requires all agents to meet at the same node, not a priori decided, within a finite amount of time. This problem has been studied assuming that the network is safe for the agents. In this paper, we consider the presence in the ring of a stationary process located at a node that disables any incoming agent without leaving any trace. Such a dangerous node is known in the literature as a black hole, and the determination of its location has been extensively investigated. The presence of the black hole makes it deterministically unfeasible for all agents to gather. So, the research concern is to determine how many agents can gather and under what conditions. In this paper we establish a complete characterization of the conditions under which the problem can be solved. In particular, we determine the maximum number of agents that can be guaranteed to gather in the same location depending on whether k or n is unknown (at least one must be known). These results are tight: in each case, gathering with one more agent is deterministically unfeasible. All our possibility proofs are constructive: we provide mobile agent algorithms that allow the agents to gather within a predefined distance under the specified conditions. The analysis of the time costs of these algorithms show that they are optimal. Our gathering algorithm for the case of unknown k is also a solution for the black hole location problem. Interestingly, its bounded time complexity is Θ(n); this is a significant improvement over the existing O(nlogn) bounded time complexity.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3