An Improved Approach Considering Intraclass Variability for Mapping Winter Wheat Using Multitemporal MODIS EVI Images

Author:

Yang Yanjun,Tao Bo,Ren Wei,Zourarakis Demetrio P.,Masri Bassil ElORCID,Sun Zhigang,Tian Qingjiu

Abstract

Winter wheat is one of the major cereal crops in the world. Monitoring and mapping its spatial distribution has significant implications for agriculture management, water resources utilization, and food security. Generally, winter wheat has distinguished phenological stages during the growing season, which form a unique EVI (Enhanced Vegetation Index) time series curve and differ considerably from other crop types and natural vegetation. Since early 2000, the MODIS EVI product has become the primary dataset for satellite-based crop monitoring at large scales due to its high temporal resolution, huge observation scope, and timely availability. However, the intraclass variability of winter wheat caused by field conditions and agricultural practices might lower the mapping accuracy, which has received little attention in previous studies. Here, we present a winter wheat mapping approach that integrates the variables derived from the MODIS EVI time series taking into account intraclass variability. We applied this approach to two winter wheat concentration areas, the state of Kansas in the U.S. and the North China Plain region (NCP). The results were evaluated against crop-specific maps or statistical data at the state/regional level, county level, and site level. Compared with statistical data, the accuracies in Kansas and the NCP were 95.1% and 92.9% at the state/regional level with R2 (Coefficient of Determination) values of 0.96 and 0.71 at the county level, respectively. Overall accuracies in confusion matrix were evaluated by validation samples in both Kansas (90.3%) and the NCP (85.0%) at the site level. Comparisons with methods without considering intraclass variability demonstrated that winter wheat mapping accuracies were improved by 17% in Kansas and 15% in the NCP using the improved approach. Further analysis indicated that our approach performed better in areas with lower landscape fragmentation, which may partly explain the relatively higher accuracy of winter wheat mapping in Kansas. This study provides a new perspective for generating multiple subclasses as training inputs to decrease the intraclass differences for crop type detection based on the MODIS EVI time series. This approach provides a flexible framework with few variables and fewer training samples that could facilitate its application to multiple-crop-type mapping at large scales.

Funder

the National Institute of Food and Agriculture, U.S. Department of Agriculture (NIFA-USDA Hatch project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3