Abstract
Multi-view clustering algorithms based on matrix factorization have gained enormous development in recent years. Although these algorithms have gained impressive results, they typically neglect the spatial structures that the latent data representation should have, for example, the ideal data representation owns a block structure just like the indicator matrix has. To address this issue, a new algorithm named latent multi-view semi-nonnegative matrix factorization with block diagonal constraint (LMSNB) is proposed. First, latent representation learning and Semi-NMF are combined to get a lower-dimensional representation with consistent information from different views. Second, the block diagonal constraint is able to capture the global structure of original data. In addition, the graph regularization is considered in our model to preserve the local structure. LMSNB can deal with negative data matrix and be applied to more fields. Although the low dimensional representation from semi-nonnegative matrix factorization loses some valuable information, it still has same structure as original data with the help of block diagonal constraint and graph regularization. Finally, an iterative optimization algorithm is proposed for our objective problem. Experiments on several multi-view benchmark datasets demonstrate the effectiveness of our approach against other state-of-the-art methods.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province
key research and development projects of Shaanxi Province
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献