Abstract
Brain tumors are most common in children and the elderly. It is a serious form of cancer caused by uncontrollable brain cell growth inside the skull. Tumor cells are notoriously difficult to classify due to their heterogeneity. Convolutional neural networks (CNNs) are the most widely used machine learning algorithm for visual learning and brain tumor recognition. This study proposed a CNN-based dense EfficientNet using min-max normalization to classify 3260 T1-weighted contrast-enhanced brain magnetic resonance images into four categories (glioma, meningioma, pituitary, and no tumor). The developed network is a variant of EfficientNet with dense and drop-out layers added. Similarly, the authors combined data augmentation with min-max normalization to increase the contrast of tumor cells. The benefit of the dense CNN model is that it can accurately categorize a limited database of pictures. As a result, the proposed approach provides exceptional overall performance. The experimental results indicate that the proposed model was 99.97% accurate during training and 98.78% accurate during testing. With high accuracy and a favorable F1 score, the newly designed EfficientNet CNN architecture can be a useful decision-making tool in the study of brain tumor diagnostic tests.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献