Swirling Flow of Chemically Reactive Viscoelastic Oldroyd-B Fluid through Porous Medium with a Convected Boundary Condition Featuring the Thermophoresis Particle Deposition and Soret–Dufour Effects

Author:

Al Elaiw Abeer,Hafeez Abdul,Khalid Asma,AL Nuwairan MuneerahORCID

Abstract

In this study, an analysis of the rotating flow of viscoelastic Oldroyd-B fluid along with porous medium featuring the Soret–Dufour effects is explored. The heat transport mechanism is discussed with the involvement of thermal radiation and heat source/sink. Additionally, the thermophoresis of particle deposition and chemical reaction are taken into the concentration equation in order to investigate the mass transportation in the liquid. To formulate the non-linear ordinary differential equations, the von Karman similarity approach is used in the system of partial differential equations and then integrated numerically by the bvp midrich scheme in Maple programming. Results are provided by graphical framework and tabular form. A quick parametric survey is carried out concerning flow field, thermal, and solutal distributions through graph representation. The curves show that increasing the values of the retardation time parameter decreases the radial velocity while increasing the angular velocity. Additionally, when the relaxation time parameter becomes powerful, the magnitude of the velocity curves decreases considerably in the radial and axial directions. The presence of a radiation parameter indicates that the fluid will absorb a greater amount of heat, which is equivalent to a higher temperature. Further, an increase in the stretching parameter leads to a reduction in the temperature components.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference20 articles.

1. Flow of magnetized Oldroyd-B nanofluid over a rotating disk;Hafeez;Appl. Nanosci.,2020

2. Uber laminare and turbulente reibung;Kármán;Z. Angew. Math. Mech.,1921

3. The flow due to a rotating disk;Cochran;Mathematical Proceedings of the Cambridge Philosophical Society,1934

4. Heat transfer by laminar flow from a rotating-plate;Millsaps;J. Aeronaut. Sci.,1952

5. Rotating disk heat transfer in a fluid swirling as a forced vortex;Shevchuk;Heat Mass Transf.,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3