Abstract
The goal of this paper is to propose and investigate new iterative methods for examining an approximate solution of a fixed-point problem, an equilibrium problem, and a finite collection of variational inclusions in the Hadamard manifold’s structure. Operating under some assumptions, we extend the proximal point algorithm to estimate the common solution of stated problems and obtain a strong convergence theorem for the common solution. We also present several consequences of the proposed iterative methods and their convergence results.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis