Adaptive Enhancement for Coal-Rock Cutting Sound Based on Parameter Self-Tuning Bistable Stochastic Resonance Model

Author:

Xu Jie,Xu Jing,Ren Chaofan,Liu Yanxin,Sun Ning

Abstract

The traditional bistable stochastic resonance model has always had the drawback of being difficult when choosing accurate system parameters when a weak signal is enhanced. This paper proposes a parameter self-tuning adaptive optimization method based on the bat optimization algorithm to address this issue. The cubic mapping strategy of chaos optimization is introduced in the initial process of the individual position of the bat algorithm. Chaos is characterized by randomness, sensitivity, fractal dimension, and universality. The initial problem of the algorithm falling into local extremums is overcome. The global search capability of the basic bat optimization algorithm has been improved. The improved bat optimization algorithm’s objective function is the signal-to-noise ratio (SNR) of the target weak signal output by the bistable stochastic resonance model. An adaptive signal enhancement algorithm based on the improved bat optimization algorithm and bistable stochastic resonance (IBA-BSR) model is constructed to increase the proportion of weak signals in the mixed signal. Simulation signals are created to validate the proposed algorithm’s feasibility. The engineering application effect of this algorithm is further demonstrated by enhancing the sound signal of coal and rock cutting by a shearer in a coal face. Engineering test results demonstrate that this algorithm can significantly increase the SNR of coal and rock cutting sound signals by 42.4537 dB, and the effect is remarkable.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Natural Science Foundation for Colleges and Universities of Jiangsu Province

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3