Application of Orthogonal Polynomial in Orthogonal Projection of Algebraic Surface

Author:

Wang Xudong,Li XiaowuORCID,Lyu Yuxia

Abstract

Point orthogonal projection onto an algebraic surface is a very important topic in computer-aided geometric design and other fields. However, implementing this method is currently extremely challenging and difficult because it is difficult to achieve to desired degree of robustness. Therefore, we construct an orthogonal polynomial, which is the ninth formula, after the inner product of the eighth formula itself. Additionally, we use the Newton iterative method for the iteration. In order to ensure maximum convergence, two techniques are used before the Newton iteration: (1) Newton’s gradient descent method, which is used to make the initial iteration point fall on the algebraic surface, and (2) computation of the foot-point and moving the iterative point to the close position of the orthogonal projection point of the algebraic surface. Theoretical analysis and experimental results show that the proposed algorithm can accurately, efficiently, and robustly converge to the orthogonal projection point for test points in different spatial positions.

Funder

National Natural Science Foundation of China

Feature Key Laboratory for Regular Institutions of Higher Education of Guizhou Province

Shandong Youth University of Political Science Doctor Starting Project

Natural Science Research Project of Guizhou Minzu University

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3