Abstract
This paper considers an unknown functional estimation problem in a regression model with multiplicative and additive noise. A linear wavelet estimator is first constructed by a wavelet projection operator. The convergence rate under the pointwise error of linear wavelet estimators is studied in local Hölder space. A nonlinear wavelet estimator is provided by the hard thresholding method in order to obtain an adaptive estimator. The convergence rate of the nonlinear estimator is the same as the linear estimator up to a logarithmic term. Finally, it should be pointed out that the convergence rates of two wavelet estimators are consistent with the optimal convergence rate on pointwise nonparametric estimation.
Funder
National Natural Science Foundation of China
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献