Trapezoidal Intuitionistic Fuzzy Power Heronian Aggregation Operator and Its Applications to Multiple-Attribute Group Decision-Making

Author:

Selvaraj JeevarajORCID,Gatiyala PrakashORCID,Hashemkhani Zolfani SarfarazORCID

Abstract

Decision-making problems involve imprecise and incomplete information that can be modelled well using intuitionistic fuzzy numbers (IFNs). Various IFNs are available in the literature for modelling such problems. However, trapezoidal intuitionistic fuzzy numbers (TrIFNs) are widely used. It is mainly because of the flexibility in capturing the incompleteness that occurs in the data. Aggregation operators play a vital role in real-life decision-making problems (modelled under an intuitionistic fuzzy environment). Different aggregation operators are available in the literature for better decision-making. Various aggregation operators are introduced in the literature as a generalization to the conventional aggregation functions defined on the set of real numbers. Each aggregation operator has a specific purpose in solving the problems effectively. In recent years, the power average (PA) operator has been used to reduce the effect of biased data provided by decision-makers. Similarly, the Heronian mean (HM) operator has a property that considers the inter-relationship among various criteria available in the decision-making problem. In this paper, we have considered both the operators (HM, PA) to introduce a new aggregation operator (on the set of TrIFNs), which takes advantage of both properties of these operators. In this study, firstly, we propose the idea of a trapezoidal intuitionistic fuzzy power Heronian aggregation (TrIFPHA) operator and a trapezoidal intuitionistic fuzzy power weighted Heronian aggregation (TrIFPWHA) operator by combining the idea of the Heronian mean operator and power average operator in real numbers. Secondly, we study different mathematical properties of the proposed aggregation operators by establishing a few essential theorems. Thirdly, we discuss a group decision-making algorithm for solving problems modelled under a trapezoidal intuitionistic fuzzy environment. Finally, we show the applicability of the group decision-making algorithm by solving a numerical case problem, and we compare the proposed method’s results with existing methods.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference40 articles.

1. More on intuitionistic fuzzy sets

2. Two theorems for intuitionistic fuzzy sets

3. On the relationship between intuitionistic fuzzy sets and some other extensions of fuzzy set theory;Deschrijver;J. Fuzzy Math.,2002

4. Ranking of incomplete trapezoidal information

5. A new ranking principle for ordering trapezoidal intuitionistic fuzzy numbers;Nayagam;Complexity,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3