Waves in a Hyperbolic Predator–Prey System

Author:

Morgulis AndreyORCID

Abstract

We address a hyperbolic predator–prey model, which we formulate with the use of the Cattaneo model for chemosensitive movement. We put a special focus on the case when the Cattaneo equation for the flux of species takes the form of conservation law—that is, we assume a special relation between the diffusivity and sensitivity coefficients. Regarding this relation, there are pieces arguing for its relevance to some real-life populations, e.g., the copepods (Harpacticoida), in the biological literature (see the reference list). Thanks to the mentioned conservatism, we get exact solutions describing the travelling shock waves in some limited cases. Next, we employ the numerical analysis for continuing these waves to a wider parametric domain. As a result, we discover smooth solitary waves, which turn out to be quite sustainable with small and moderate initial perturbations. Nevertheless, the perturbations cause shedding of the predators from the main core of the wave, which can be treated as a settling mechanism. Besides, the localized perturbations make waves, colliding with the main core and demonstrating peculiar quasi-soliton phenomena sometimes resembling the leapfrog playing. An interesting side result is the onset of the migration waves due to the explosion of overpopulated cores.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference22 articles.

1. From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II, Jahresber;Horstmann;Deutsch. Math.-Verein.,2004

2. A user’s guide to PDE models for chemotaxis;Hillen;J. Math. Biol.,2009

3. Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues;Bellomo;Math. Models Methods Appl. Sci.,2015

4. Cattaneo models for chemosensitive movement: Numerical solution and pattern formation;Dolak;J. Math. Biol.,2003

5. Derivation of hyperbolic models for chemosensitive movement;Filbet;J. Math. Biol.,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3