A Crank–Nicolson Compact Difference Method for Time-Fractional Damped Plate Vibration Equations

Author:

Wu Cailian,Wei Congcong,Yin Zhe,Zhu Ailing

Abstract

This paper discusses the Crank–Nicolson compact difference method for the time-fractional damped plate vibration problems. For the time-fractional damped plate vibration equations, we introduce the second-order space derivative and the first-order time derivative to convert fourth-order differential equations into second-order differential equation systems. We discretize the space derivative via compact difference and approximate the time-integer-order derivative and fraction-order derivative via central difference and L1 interpolation, respectively, to obtain the compact difference formats with fourth-order space precision and 3−α(1<α<2)-order time precision. We apply the energy method to analyze the stability and convergence of this difference format. We provide numerical cases, which not only validate the convergence order and feasibility of the given difference format, but also simulate the influence of the damping coefficient on the amplitude of plate vibration.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference30 articles.

1. Recent advances in research and applications of viscoelastically damped structure;Wang;J. Disaster Prev. Mitig. Eng.,2006

2. Some advances in non-Newtonian fluid mechanics;Zhu;Mech. Eng.,2006

3. Fundamentals of Viscoelastic Mechanics;Cai,1989

4. Equiv alent v isco us damping system for viscoelastic fractional derivative model;Li;J. Tsinghua Univ. (Sci. Technol.),2000

5. Intermediate process, critical phenomena-theory, methodology and evolution of the fractional operator and its applications to the modern mechanics;Xu;Sci. China Ser. G Phys. Mech. Astron.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Finite Difference Method for Solving the Wave Equation with Fractional Damping;Mathematical and Computational Applications;2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3