Abstract
Fundamental identities characterizing a nearly cosymplectic structure and analytical expressions for the first and second structural tensors are obtained in this paper. An identity that is satisfied by the first structural tensor of a nearly cosymplectic structure is proved as well. A contact analog of nearly cosymplectic manifolds’ constancy of type is introduced in this paper. Pointwise constancy conditions of the type of nearly cosymplectic manifolds are obtained. It is proved that for nearly cosymplectic manifolds of dimension greater than three, pointwise constancy of type is equivalent to global constancy of type. A complete classification of nearly cosymplectic manifolds of constant type is obtained. It is also proved that a nearly cosymplectic manifold of dimension less than seven is a proper nearly cosymplectic manifold.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Reference28 articles.
1. Almost contact manifolds with Killing structure tensors
2. Almost contact manifolds with Killing structure tensors. II
3. Sur le geométrie des varietes approximativement cosymplectiques;Kirichenko;C. R. Acad. Sci. Paris Ser. I Math.,1982
4. Differential-Geometric Structures on Manifolds;Kirichenko,2013
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献