RainPredRNN: A New Approach for Precipitation Nowcasting with Weather Radar Echo Images Based on Deep Learning

Author:

Tuyen Do Ngoc,Tuan Tran ManhORCID,Le Xuan-HienORCID,Tung Nguyen Thanh,Chau Tran Kim,Van Hai PhamORCID,Gerogiannis Vassilis C.ORCID,Son Le Hoang

Abstract

Precipitation nowcasting is one of the main tasks of weather forecasting that aims to predict rainfall events accurately, even in low-rainfall regions. It has been observed that few studies have been devoted to predicting future radar echo images in a reasonable time using the deep learning approach. In this paper, we propose a novel approach, RainPredRNN, which is the combination of the UNet segmentation model and the PredRNN_v2 deep learning model for precipitation nowcasting with weather radar echo images. By leveraging the abilities of the contracting-expansive path of the UNet model, the number of calculated operations of the RainPredRNN model is significantly reduced. This result consequently offers the benefit of reducing the processing time of the overall model while maintaining reasonable errors in the predicted images. In order to validate the proposed model, we performed experiments on real reflectivity fields collected from the Phadin weather radar station, located at Dien Bien province in Vietnam. Some credible quality metrics, such as the mean absolute error (MAE), the structural similarity index measure (SSIM), and the critical success index (CSI), were used for analyzing the performance of the model. It has been certified that the proposed model has produced improved performance, about 0.43, 0.95, and 0.94 of MAE, SSIM, and CSI, respectively, with only 30% of training time compared to the other methods.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3