Abstract
In this work, a Lotka–Volterra type predator–prey system with time delay and stage structure for the predators is proposed and analyzed. By using the permanence theory for infinite dimensional system, we get that the system is permanent if some conditions are satisfied. The local and global stability of the positive equilibrium is presented. The existence of Hopf bifurcation around the positive equilibrium is observed. Further, by using the normal form theory and center manifold approach, we derive the explicit formulas determining the stability of bifurcating periodic solutions and the direction of Hopf bifurcation. Numerical simulations are carried out by Matlab software to explain the theoretical results. We find that combined time delay and stage structure can affect the dynamical behavior of the system.
Funder
the Natural Science Foundation of Henan
Nanhu Scholars Program for Young Scholars of XYNU
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献