Dynamical Behaviour of a Modified Tuberculosis Model with Impact of Public Health Education and Hospital Treatment

Author:

Sulayman FatimaORCID,Abdullah Farah AiniORCID

Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis is one of the treacherous infectious diseases of global concern. In this paper, we consider a deterministic model of TB infection with the public health education and hospital treatment impact. The effective reproductive number, Rph, that measures the potential spread of TB is presented by employing the next generation matrix approach. We investigate local and global stability of the TB-free equilibrium point, endemic equilibrium point, and sensitivity analysis. The analyses of the proposed model show that the model undergoes the phenomenon of backward bifurcation when the effective reproduction number (Rph) is less than one, where two stable equilibria, namely, the DFE and an EEP coexist. Further, we compute the sensitivity of the impact of each parameter on the effective reproductive number of the model by employing a normalized sensitivity index formula. Numerical simulation of the proposed model was conducted using Maple 2016 and MatLab R2020b software and compared with the theoretical results for illustration purposes. The investigation results can be useful in providing information to policy makers and public health authorities in mitigating the spread of TB infection by public health education and hospital treatment.

Funder

Ministry of Higher Education

Fundamental Research Grant Scheme

Research Creativity and Management Office (RCMO), Universiti Sains Malaysia

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference45 articles.

1. World Health Organization (2019). Global Tuberculosis Report, WHO.

2. Modeling and analysis of tuberculosis (TB) in Khyber Pakhtunkhwa, Pakistan;Ullah;Math. Comput. Simul.,2019

3. Tuberculosis: A global overview of the situation today;Sudre;Bull. World Health Organ.,1992

4. Global tuberculosis incidence and mortality during;Dolin;Bull. World Health Organ.,1994

5. World Health Organization (2020). Global Tuberculosis Report 2020, WHO.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3