Does Set Theory Really Ground Arithmetic Truth?

Author:

Freire Alfredo Roque

Abstract

We consider the foundational relation between arithmetic and set theory. Our goal is to criticize the construction of standard arithmetic models as providing grounds for arithmetic truth. Our method is to emphasize the incomplete picture of both theories and to treat models as their syntactical counterparts. Insisting on the incomplete picture will allow us to argue in favor of the revisability of the standard-model interpretation. We start briefly characterizing the expansion of arithmetic ‘truth’ provided by the interpretation in a set theory. Interpreted versions of an arithmetic theory into set theories generally have more theorems than the original. This theorem expansion is not complete however. Using this, the set theoretic multiversalist concludes that there are multiple legitimate standard models of arithmetic. We suggest a different multiversalist conclusion: while there is a single arithmetic structure, its interpretation in each universe may vary or even not be possible. We continue by defining the coordination problem. We consider two independent communities of mathematicians responsible for deciding over new axioms for ZF and PA. How likely are they to be coordinated regarding PA’s interpretation in ZF? We prove that it is possible to have extensions of PA not interpretable in a given set theory ST. We further show that the number of extensions of arithmetic is uncountable, while interpretable extensions in ST are countable. We finally argue that this fact suggests that coordination can only work if it is assumed from the start.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference27 articles.

1. Satisfaction is not absolute;Hamkins;Rev. Symb. Log.,2014

2. The modal logic of arithmetic potentialism and the universal algorithm;Hamkins;Mathematics,2018

3. THE MODAL LOGIC OF SET-THEORETIC POTENTIALISM AND THE POTENTIALIST MAXIMALITY PRINCIPLES

4. Hamkins on the multiverse;Koellner,2013

5. Undecidable Theories;Tarski,1953

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3