Schwarzschild Spacetimes: Topology

Author:

Krupka DemeterORCID,Brajerčík JánORCID

Abstract

This paper is devoted to the geometric theory of a Schwarzschild spacetime, a basic objective in applications of the classical general relativity theory. In a broader sense, a Schwarzschild spacetime is a smooth manifold, endowed with an action of the special orthogonal group SO(3) and a Schwarzschild metric, an SO(3)-invariant metric field, satisfying the Einstein equations. We prove the existence of and find all Schwarzschild metrics on two topologically non-equivalent manifolds, R×(R3∖{(0,0,0)}) and S1×(R3∖{(0,0,0)}). The method includes a classification of SO(3)-invariant, time-translation invariant and time-reflection invariant metrics on R×(R3∖{(0,0,0)}) and a winding mapping of the real line R onto the circle S1. The resulting family of Schwarzschild metrics is parametrized by an arbitrary function and two real parameters, the integration constants. For any Schwarzschild metric, one of the parameters determines a submanifold, where the metric is not defined, the Schwarzschild sphere. In particular, the family admits a global metric whose Schwarzschild sphere is empty. These results transfer to S1×(R3∖{(0,0,0)}) by the winding mapping. All our assertions are derived independently of the signature of the Schwarzschild metric; the signature can be chosen as an independent axiom.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference16 articles.

1. Die Feldgleichungen der Gravitation;Einstein;Sitzungsberichte Der KöNiglich Preuss. Akad. Der Wiss. Berl.,1915

2. Die grundlangen der physik. Nachrichten von der Kon. Gessellschaft der Wiss Gottingen;Hilbert;Math.-phys. K l,1915

3. Schwarzschild, K. (1916). Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte Der KöNiglich PreußIschen Akad. Der Wiss. Berl., 189–196.

4. Hawking, S.W., and Ellis, G.F.R. (1973). The Large Scale Structure of Space-Time, Cambridge University Press.

5. De Felice, F., and Clarke, C.J.S. (1990). Cambridge Monographs on Mathematical Physics, Cambridge University Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Structure of SO(3): Trace and Canonical Decompositions;Mathematics;2024-05-10

2. Four-dimensional SO(3)-spherically symmetric Berwald Finsler spaces;International Journal of Geometric Methods in Modern Physics;2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3