Computational Experiments with the Roots of Fibonacci-like Polynomials as a Window to Mathematics Research

Author:

Abramovich SergeiORCID,Kuznetsov NikolayORCID,Leonov Gennady

Abstract

Fibonacci-like polynomials, the roots of which are responsible for a cyclic behavior of orbits of a second-order two-parametric difference equation, are considered. Using Maple and Wolfram Alpha, the location of the largest and the smallest roots responsible for the cycles of period p among the roots responsible for the cycles of periods 2kp (period-doubling) and kp (period-multiplying) has been determined. These purely computational results of experimental mathematics, made possible by the use of modern digital tools, can be used as a motivation for confirmation through not-yet-developed methods of formal mathematics.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference7 articles.

1. Abramovich, S., and Leonov, G.A. (2019). Revisiting Fibonacci Numbers through a Computational Experiment, Nova Science Publishers.

2. Kline, M. (1985). Mathematics for the Non-Mathematician, Dover.

3. Borwein, J.M., and Bailey, D.H. (2008). Mathematics by Experiment: Plausible Reasoning in the 21st Century, A. K. Peters.

4. Divisibility properties of Fibonacci polynomials;Webb;Fibonacci Q.,1969

5. The k-Fibonacci sequence and the Pascal 2-triangle;Falcon;Chaos Solut. Fractals,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3