Abstract
As Vietnam continues to industrialize and modernize, such economic development and high-tech will require a major electrical energy source to operate the electrical equipment; hence, the hydropower plants are established and growing up to demand. Therefore, the purpose of this study is to evaluate the business performance of Vietnamese hydropower suppliers by integrating the LTS(A,A,A) model of the Additive Holt-winters method in Tableau and a super-slacks-based measure (super-SBM) max model in data envelopment analysis (DEA). The LTS(A,A,A) model is applied to forecast future valuation from 2022 to 2025 based on historical time series from 2012 to 2021. Next, with the actual and predicted data, the researcher uses the super-SBM max model to calculate the business performance of these hydropower suppliers from past to future. The empirical result reveals efficient and inefficient cases to explore which hydropower suppliers can achieve the business performance in their operational process. The position of hydropower suppliers in Vietnam from past to future time is determined particularly based on their scores every year. Further, the empirical result recommends a solution to deal with inefficient cases by deducting the input excesses and raising the output shortages based on the principle of the super-SBM Max model in DEA. The finding results create an overview of the operational process with the continuing variations in each period to equip hydropower suppliers in Vietnam which will determine their future and operational orientation.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis