Hybrid Fuzzy C-Means Clustering Algorithm Oriented to Big Data Realms

Author:

Pérez-Ortega JoaquínORCID,Roblero-Aguilar Sandra SilviaORCID,Almanza-Ortega Nelva Nely,Frausto Solís JuanORCID,Zavala-Díaz Crispín,Hernández YasmínORCID,Landero-Nájera Vanesa

Abstract

A hybrid variant of the Fuzzy C-Means and K-Means algorithms is proposed to solve large datasets such as those presented in Big Data. The Fuzzy C-Means algorithm is sensitive to the initial values of the membership matrix. Therefore, a special configuration of the matrix can accelerate the convergence of the algorithm. In this sense, a new approach is proposed, which we call Hybrid OK-Means Fuzzy C-Means (HOFCM), and it optimizes the values of the membership matrix parameter. This approach consists of three steps: (a) generate a set of n solutions of an x dataset, applying a variant of the K-Means algorithm; (b) select the best solution as the basis for generating the optimized membership matrix; (c) resolve the x dataset with Fuzzy C-Means. The experimental results with four real datasets and one synthetic dataset show that HOFCM reduces the time by up to 93.94% compared to the average time of the standard Fuzzy C-Means. It is highlighted that the quality of the solution was reduced by 2.51% in the worst case.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference31 articles.

1. A survey of fuzzy clustering

2. Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014;Nayak;Proceedings of the Comput Intell Data Mining,2014

3. Big Data Clustering: A Review;Shirkhorshidi;Proceedings of the International Conference on Computational Science and Its Applications—ICCSA 2014,2014

4. Big data and clustering algorithms;Ajin;Proceedings of the 2016 International Conference on Research Advances in Integrated Navigation Systems (RAINS),2016

5. Some methods for classification and analysis of multivariate observations;MacQueen;Proceedings of the 5th Berkeley Symp Math Statis and Probability,1965

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3