Abstract
This article discusses the author’s version of the technology for solving a one-dimensional boundary value problem for a one-dimensional advection–diffusion equation based on the method of separation of variables, as well as the theory of eigenvalues and eigenfunctions when constructing a solution to a differential equation. This problem is solved in two stages. Firstly, we illustrate the technology of separating variables for equations with fractional derivatives, and then apply the theory of eigenvalues and eigenfunctions to obtain an exact solution in the form of an infinite series. Since this series converges very quickly, it is natural to replace it with the sum of the first few terms. The approximate solution obtained in this way is quite suitable for numerical calculations in practice. The article provides a listing of the program for performing calculations, as well as the results of calculations themselves.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献