Lexicon-Enhanced Multi-Task Convolutional Neural Network for Emotion Distribution Learning

Author:

Dong Yuchang,Zeng XueqiangORCID

Abstract

Emotion distribution learning (EDL) handles emotion fuzziness by means of the emotion distribution, which is an emotion vector that quantitatively represents a set of emotion categories with their intensity of a given instance. Despite successful applications of EDL in many practical emotion analysis tasks, existing EDL methods have seldom considered the linguistic prior knowledge of affective words specific to the text mining task. To address the problem, this paper proposes a text emotion distribution learning model based on a lexicon-enhanced multi-task convolutional neural network (LMT-CNN) to jointly solve the tasks of text emotion distribution prediction and emotion label classification. The LMT-CNN model designs an end-to-end multi-module deep neural network to utilize both semantic information and linguistic knowledge. Specifically, the architecture of the LMT-CNN model consists of a semantic information module, an emotion knowledge module based on affective words, and a multi-task prediction module to predict emotion distributions and labels. Extensive comparative experiments on nine commonly used emotional text datasets showed that the proposed LMT-CNN model is superior to the compared EDL methods for both emotion distribution prediction and emotion recognition tasks.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3