Design of Type-3 Fuzzy Systems and Ensemble Neural Networks for COVID-19 Time Series Prediction Using a Firefly Algorithm

Author:

Melin PatriciaORCID,Sánchez Daniela,Castro Juan R.,Castillo OscarORCID

Abstract

In this work, information on COVID-19 confirmed cases is utilized as a dataset to perform time series predictions. We propose the design of ensemble neural networks (ENNs) and type-3 fuzzy inference systems (FISs) for predicting COVID-19 data. The answers for each ENN module are combined using weights provided by the type-3 FIS, in which the ENN is also designed using the firefly algorithm (FA) optimization technique. The proposed method, called ENNT3FL-FA, is applied to the COVID-19 data for confirmed cases from 12 countries. The COVID-19 data have shown to be a complex time series due to unstable behavior in certain periods of time. For example, it is unknown when a new wave will exist and how it will affect each country due to the increase in cases due to many factors. The proposed method seeks mainly to find the number of modules of the ENN and the best possible parameters, such as lower scale and lower lag of the type-3 FIS. Each module of the ENN produces an individual prediction. Each prediction error is an input for the type-3 FIS; moreover, outputs provide a weight for each prediction, and then the final prediction can be calculated. The type-3 fuzzy weighted average (FWA) integration method is compared with the type-2 FWA to verify its ability to predict future confirmed cases by using two data periods. The achieved results show how the proposed method allows better results for the real prediction of 20 future days for most of the countries used in this study, especially when the number of data points increases. In countries such as Germany, India, Italy, Mexico, Poland, Spain, the United Kingdom, and the United States of America, on average, the proposed ENNT3FL-FA achieves a better performance for the prediction of future days for both data points. The proposed method proves to be more stable with complex time series to predict future information such as the one utilized in this study. Intelligence techniques and their combination in the proposed method are recommended for time series with many data points.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3