Least Squares in a Data Fusion Scenario via Aggregation Operators

Author:

de Jesus Gildson QueirozORCID,Palmeira Eduardo SilvaORCID

Abstract

In this paper, appropriate least-squares methods were developed to operate in data fusion scenarios. These methods generate optimal estimates by combining measurements from a finite collection of samples. The aggregation operators of the average type, namely, ordered weighted averaging (OWA), Choquet integral, and mixture operators, were applied to formulate the optimization problem. Numerical examples about fitting curves to a given set of points are provided to show the effectiveness of the proposed algorithms.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference27 articles.

1. OWA-weighted based clustering method for classification problem;Cheng;Expert Syst. Appl.,2009

2. Aggregation functions on n-dimensional ordered vectors equipped with an admissible order and an application in multi-criteria group decision-making;Milfont;Int. J. Approx. Reason.,2021

3. Forecasting the exchange rate with multiple linear regression and heavy ordered weighted average operators;Flores-Sosa;Eur. J. Oper. Res.,2022

4. Robust Estimation for Uncertain Models in a Data Fusion Scenario;Sayed;IFAC Proc. Vol.,2000

5. Kailath, T., Sayed, A.S., and Hassibi, B. (2000). Linear Estimation, Prentice Hall. [3rd ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3