Robust Spectral Clustering Incorporating Statistical Sub-Graph Affinity Model

Author:

Lin Zhenxian,Wang JiagangORCID,Wu Chengmao

Abstract

Hyperspectral image (HSI) clustering is a challenging work due to its high complexity. Subspace clustering has been proven to successfully excavate the intrinsic relationships between data points, while traditional subspace clustering methods ignore the inherent structural information between data points. This study uses graph convolutional subspace clustering (GCSC) for robust HSI clustering. The model remaps the self-expression of the data to non-Euclidean domains, which can generate a robust graph embedding dictionary. The EKGCSC model can achieve a globally optimal closed-form solution by using a subspace clustering model with the Frobenius norm and a Gaussian kernel function, making it easier to implement, train, and apply. However, the presence of noise can have a noteworthy negative impact on the segmentation performance. To diminish the impact of image noise, the concept of sub-graph affinity is introduced, where each node in the primary graph is modeled as a sub-graph describing the neighborhood around the node. A statistical sub-graph affinity matrix is then constructed based on the statistical relationships between sub-graphs of connected nodes in the primary graph, thus counteracting the uncertainty image noise by using more information. The model used in this work was named statistical sub-graph affinity kernel graph convolutional subspace clustering (SSAKGCSC). Experiment results on Salinas, Indian Pines, Pavia Center, and Pavia University data sets showed that the SSAKGCSC model can achieve improved segmentation performance and better noise resistance ability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3