Abstract
At present, association rules have been widely used in prediction, personalized recommendation, risk analysis and other fields. However, it has been pointed out that the traditional framework to evaluate association rules, based on Support and Confidence as measures of importance and accuracy, has several drawbacks. Some papers presented several new evaluation methods; the most typical methods are Lift, Improvement, Validity, Conviction, Chi-square analysis, etc. Here, this paper first analyzes the advantages and disadvantages of common measurement indicators of association rules and then puts forward four new measure indicators (i.e., Bi-support, Bi-lift, Bi-improvement, and Bi-confidence) based on the analysis. At last, this paper proposes a novel Bi-directional interestingness measure framework to improve the traditional one. In conclusion, the bi-directional interestingness measure framework (Bi-support and Bi-confidence framework) is superior to the traditional ones in the aspects of the objective criterion, comprehensive definition, and practical application.
Funder
National Natural Science Foundation of China
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献