A Comparative Study of Models for Heat Transfer in Bidisperse Gas–Solid Systems via CFD–DEM Simulations

Author:

Huang Zheqing,Huang Qi,Yu YaxiongORCID,Li Yu,Zhou QiangORCID

Abstract

In this study, flow and heat transfers in bidisperse gas–solid systems were numerically investigated using the computational fluid dynamics–discrete element method (CFD–DEM). Three different models to close the gas–solid heat transfer coefficient for each species of bidisperse systems were compared in the simulations. The effect of the particle diameter ratio and particle number ratio between large and small particles on the particle mean temperature and temperature distribution of each species were systematically investigated. The simulation results show that differences in the particle mean temperature and temperature distribution profiles exist among the three heat transfer models at a higher particle number ratio. The differences between the effects of three heat transfer models on heat transfer properties in bidisperse systems with particle diameter ratios of up to 4 are marginal when the particle number ratio between small and large particles is 1.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3