Abstract
In the research presented in this paper, confluent hypergeometric function is embedded in the theory of strong differential superordinations. In order to proceed with the study, the form of the confluent hypergeometric function is adapted taking into consideration certain classes of analytic functions depending on an extra parameter previously introduced related to the theory of strong differential subordination and superordination. Operators previously defined using confluent hypergeometric function, namely Kummer–Bernardi and Kummer–Libera integral operators, are also adapted to those classes and strong differential superordinations are obtained for which they are the best subordinants. Similar results are obtained regarding the derivatives of the operators. The examples presented at the end of the study are proof of the applicability of the original results.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献