Slope Erosion and Hydraulics during Thawing of the Sand-Covered Loess Plateau

Author:

Su Yuanyi,Li PengORCID,Ren Zongping,Xiao Lie,Wang Tian,Zhang Yi

Abstract

Seasonal freeze-thaw processes have led to severe soil erosion globally. Slopes are particularly susceptible to changes in runoff, it can be useful to study soil erosion mechanisms. We conducted meltwater flow laboratory experiments to quantify the temporal and spatial distribution of hydraulic parameters on sandy slopes in relation to runoff and sediment yield under constant flow, different soil conditions (unfrozen slope: US; frozen slope: FS), and variable sand thickness. The results showed that sand can prolong initial runoff time, and US and FS have significantly different initial runoff times. There was a significant linear relationship between the cumulative runoff and the cumulative sediment yield. Additionally, hydrodynamic parameters of US and FS varied with time and spatially, as the distance between US and FS is linearly related to the top of the slope. We found that the main runoff flow pattern was composed of laminar flow and supercritical flow. There was a significant linear relationship between flow velocity and hydraulic parameters. The flow velocity is the best hydraulic parameter to simulate the trend of slope erosion process. This study can provide a scientific basis for a model of slope erosion during thawing for the Loess Plateau.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3