Deformation Prediction of Unstable Slopes Based on Real-Time Monitoring and DeepAR Model

Author:

Dong MeiORCID,Wu Hongyu,Hu Hui,Azzam Rafig,Zhang Liang,Zheng Zengrong,Gong Xiaonan

Abstract

With increased urbanization, accidents related to slope instability are frequently encountered in construction sites. The deformation and failure mechanism of a landslide is a complex dynamic process, which seriously threatens people’s lives and property. Currently, prediction and early warning of a landslide can be effectively performed by using Internet of Things (IoT) technology to monitor the landslide deformation in real time and an artificial intelligence algorithm to predict the deformation trend. However, if a slope failure occurs during the construction period, the builders and decision-makers find it challenging to effectively apply IoT technology to monitor the emergency and assist in proposing treatment measures. Moreover, for projects during operation (e.g., a motorway in a mountainous area), no recognized artificial intelligence algorithm exists that can forecast the deformation of steep slopes using the huge data obtained from monitoring devices. In this context, this paper introduces a real-time wireless monitoring system with multiple sensors for retrieving high-frequency overall data that can describe the deformation feature of steep slopes. The system was installed in the Qili connecting line of a motorway in Zhejiang Province, China, to provide a technical support for the design and implementation of safety solutions for the steep slopes. Most of the devices were retained to monitor the slopes even after construction. The machine learning Probabilistic Forecasting with Autoregressive Recurrent Networks (DeepAR) model based on time series and probabilistic forecasting was introduced into the project to predict the slope displacement. The predictive accuracy of the DeepAR model was verified by the mean absolute error, the root mean square error and the goodness of fit. This study demonstrates that the presented monitoring system and the introduced predictive model had good safety control ability during construction and good prediction accuracy during operation. The proposed approach will be helpful to assess the safety of excavated slopes before constructing new infrastructures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3