THz Generation by Two-Color Plasma: Time Shaping and Ultra-Broadband Polarimetry

Author:

Paparo Domenico12ORCID,Martinez Anna123ORCID,Rubano Andrea12ORCID,Houard Jonathan4,Hideur Ammar5ORCID,Vella Angela4ORCID

Affiliation:

1. ISASI—Institute of Applied Sciences and Intelligent Systems, Consiglio Nazionale delle Ricerche, via Campi Flegrei 34, 80078 Pozzuoli, Italy

2. Dipartimento di Fisica “Ettore Pancini”, Università di Napoli “Federico II”, Complesso Universitario di Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy

3. Scuola Superiore Meridionale, Largo San Marcellino, 80138 Napoli, Italy

4. University Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie University, GPM UMR 6634, F-76000 Rouen, France

5. CORIA CNRS, INSA, Université de Rouen Normandie, F-76801 Saint Etienne du Rouvray, France

Abstract

The generation of terahertz radiation via laser-induced plasma from two-color femtosecond pulses in air has been extensively studied due to its broad emission spectrum and significant pulse energy. However, precise control over the temporal properties of these ultra-broadband terahertz pulses, as well as the measurement of their polarization state, remain challenging. In this study, we review our latest findings on these topics and present additional results not previously reported in our earlier works. First, we investigate the impact of chirping on the fundamental wave and the effect of manipulating the phase difference between the fundamental wave and the second-harmonic wave on the properties of generated terahertz pulses. We demonstrate that we can tune the time shape of terahertz pulses, causing them to reverse polarity or become bipolar by carefully selecting the correct combination of chirp and phase. Additionally, we introduce a novel technique for polarization characterization, termed terahertz unipolar polarimetry, which utilizes a weak probe beam and avoids the systematic errors associated with traditional methods. This technique is effective for detecting polarization-structured terahertz beams and the longitudinal component of focused terahertz beams. Our findings contribute to the improved control and characterization of terahertz radiation, enhancing its application in fields such as nonlinear optics, spectroscopy, and microscopy.

Funder

European Union

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3