Evaluation of the Power Generation Impact for the Mobility of Battery Electric Vehicles

Author:

Rey Javier1,Cremades Lázaro V.1ORCID

Affiliation:

1. Department of Project and Construction Engineering, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain

Abstract

European institutions have decided to ban the sale of Internal Combustion Vehicles (ICEVs) in the EU from 2035. This opens a possible scenario in which, in the not-too-distant future, all vehicles circulating in Europe are likely to be Battery Electric Vehicles (BEVs). The Spanish vehicle fleet is one of the oldest and has the lowest percentage of BEVs in Europe. The aim of this study is to evaluate the hypothetical scenario in which the current mobility of ICEVs is transformed into BEVs, in the geographical area of the province of Barcelona and in Spain in general. The daily electricity consumption, the required installation capacity of wind and solar photovoltaic energies, and the potential reduction of NOx and particulate matter (PM) emissions are estimated. The daily emission reduction would be about 314 tons of NOx and 17 tons of PM in Spain. However, the estimated investment required in Spain to generate the additional electricity from renewable sources would be enormous (over EUR 25.4 billion), representing, for example, 5.5% of the total national budget in 2022.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference45 articles.

1. United Nations Climate Change (2023, April 19). The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement.

2. News European Parliament (2023, April 23). EU Ban on the Sale of New Petrol and Diesel Cars from 2035 Explained. Available online: https://www.europarl.europa.eu/news/en/headlines/economy/20221019STO44572/eu-ban-on-sale-of-new-petrol-and-diesel-cars-from-2035-explained.

3. Eurocities (2023, April 29). Low Emission Zones: Challenges and Solutions. Available online: https://eurocities.eu/latest/low-emission-zones-challenges-and-solutions/.

4. Krajinska, A. (2023, April 29). Electric Vehicles Are Far Better than Combustion Engine Cars When it Comes to Air Pollution. Here’s Why. Available online: https://www.transportenvironment.org/discover/electric-vehicles-are-far-better-than-combustion-engine-cars-when-it-comes-to-air-pollution-heres-why/.

5. EUR-Lex (2023, April 29). Commission Regulation (EU) 2017/1151 Supplementing Regulation (EC) No 715/2007 of the European Parliament and of the Council on Type-Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6). Available online: http://publications.europa.eu/resource/cellar/7d1c640d-62d8-11e7-b2f2-01aa75ed71a1.0006.02/DOC_1.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3