Custom-Designed Pre-Chamber: Investigating the Effects on Small SI Engine in Active and Passive Modes

Author:

Sementa Paolo1ORCID,Tornatore Cinzia1ORCID,Catapano Francesco1,Di Iorio Silvana1ORCID,Vaglieco Bianca Maria1ORCID

Affiliation:

1. Institute of Science and Technology for Sustainable Energy and Mobility, CNR (Italian National Research Council), Via Marconi 4, 80125 Napoli, Italy

Abstract

This work shows the results of an experimental campaign carried out in two spark ignition engines, a small optical research engine and its commercial counterpart, using a turbulent ignition system (pre-chamber) specifically designed for small engines. Advanced optical techniques and conventional methods were used to study the combustion process under various operating conditions. The pre-chamber operated actively in the research engine and passively in the commercial engine. Results showed that the pre-chamber configuration resulted in an increase in indicated mean effective pressure (IMEP) and a decrease in the coefficient of variation (CoV) of IMEP. These improvements compensated for challenges such as slow methane combustion rate, poor lean burn capability, and air displacement. In addition, the pre-chamber configuration exhibited lower fuel consumption and specific exhaust emissions compared to the standard ignition system. The novelty of this work lies in the successful implementation of the turbulent ignition system as a retrofit solution for SI engines, showing improved combustion efficiency and lower emissions. The study goes beyond previous efforts by demonstrating the benefits of the pre-chamber configuration in small engines without requiring extensive modifications. The results provide valuable insights into the automotive industry’s pursuit of engine optimization and highlight the significance of innovative approaches for spark ignition engines in contributing to sustainable mobility.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3