Affiliation:
1. College of Energy and Power Engineering, North China University of Water Resources and Electronic Power, Zhengzhou 450045, China
2. Henan Fluid Machinery Engineering Research Center, Zhengzhou 450045, China
Abstract
Under the background of “peak carbon dioxide emissions by 2030 and carbon neutrality by 2060 strategies” and grid-connected large-scale renewables, the grid usually adopts a method of optimal scheduling to improve its ability to cope with the stochastic and volatile nature of renewable energy and to increase economic efficiency. This article proposes a short-term optimal scheduling model for wind–solar storage combined-power generation systems in high-penetration renewable energy areas. After the comprehensive consideration of battery life, energy storage units, and load characteristics, a hybrid energy storage operation strategy was developed. The model uses the remaining energy in the system after deducting wind PV and energy storage output as the “generalized load”. An improved particle swarm optimization (PSO) is used to solve the scheduling schemes of different running strategies under different objectives. The optimization strategy optimizes the battery life-loss coefficient from 0.073% to 0.055% under the target of minimizing the mean squared deviation of “generalized load”, which was optimized from 0.088% to 0.053% under the minimized fluctuation of combined system output and optimized from 0.092% to 0.081% under the minimized generation costs of the combined system. The results show that the model can ensure a stable operation of the combined system, and the operation strategy proposed in this article effectively reduces battery life loss while reducing the total power generation cost of the system. Finally, the superiority of the improved PSO algorithm was verified.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献