Reductive Degradation of N-Nitrosodimethylamine via UV/Sulfite Advanced Reduction Process: Efficiency, Influencing Factors and Mechanism

Author:

Zha Xiaosong12ORCID,Wang Shuren12,Zhang Deyu12

Affiliation:

1. Key Laboratory of Estuary Ecology and Environmental Health of Fujian Province, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China

2. School of Environmental Science and Engineering, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China

Abstract

N-nitrosodimethylamine (NDMA), as an emerging nitrogenous disinfection byproduct, is strictly controlled by multiple countries due to its high toxicity in drinking water. Advanced reduction processes (ARPs) are a new type of water treatment technology that can generate highly reactive reducing radicals and make environmental contaminants degrade rapidly and innocuously. In this study, a systematic investigation on the kinetics of the NDMA degradation via the chosen UV/sulfite ARP and the impacts of some key parameters of reaction system was conducted. The results indicated that the UV/sulfite ARP was an efficient and energy saving method for the reductive degradation of NDMA. A total of 94.40% of NDMA was removed using the UV/sulfite ARP, while only 45.48% of NDMA was removed via direct UV photolysis under the same reaction conditions. The degradation of NDMA via the UV/sulfite ARP followed pseudo-first-order kinetics. Increasing both the UV light intensity and sulfite dosage led to a proportional increase in the NDMA removal efficiency. The alkaline condition favored the degradation of NDMA, with the removal efficiency increasing from 21.57% to 66.79% within the initial 5 min of the reaction when the pH increased from 3 to 11. The presence of dissolved oxygen substantially decreased the removal efficiency of NDMA due to the formation of oxidizing superoxide radicals, which competed with NDMA by capturing the reducing active radicals during the reaction. An analysis of the degradation products indicated that several refractory intermediates such as dimethylamine, methylamine and nitrite were completely decomposed via the UV/sulfite ARP, and the final degradation products were formate, ammonia and nitrogen.

Funder

Natural Science Foundation of Fujian Province of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3