Abstract
The Al-20Si-5Fe-3Cu-1Mg alloy was fabricated using selective laser melting (SLM). The microstructure and properties of the as-prepared SLM, post-treated SLM, and SLM with substrate plate heating are studied. The as-prepared SLM sample shows a non-uniform microstructure with four different phases: fcc-αAl, eutectic Al-Si, Al2MgSi, and δ-Al4FeSi2. With thermal treatment, the phases become coarser and the δ-Al4FeSi2 phase transforms partially to β-Al5FeSi. The sample produced with SLM substrate plate heating shows a relatively uniform microstructure without a distinct difference between hatch overlaps and track cores. Room temperature compression test results show that an as-prepared SLM sample reaches a maximum strength (862 MPa) compared to the heat-treated (524 MPa) and substrate plate heated samples (474 MPa) due to the presence of fine microstructure and the internal stresses. The reduction in strength of the sample produced with substrate plate heating is due to the coarsening of the microstructure, but the plastic deformation shows an improvement (20%). The present observations suggest that substrate plate heating can be effectively employed not only to minimize the internal stresses (by impacting the cooling rate of the process) but can also be used to modulate the mechanical properties in a controlled fashion.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Science and Technology Innovation Plan Of Shanghai Science and Technology Commission
European Regional Development Fund
Subject
General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献