Dynamic Response of Angle Ply Laminates with Uncertainties Using MARS, ANN-PSO, GPR and ANFIS

Author:

Mishra BharatORCID,Kumar AjayORCID,Zaburko JacekORCID,Sadowska-Buraczewska BarbaraORCID,Barnat-Hunek DanutaORCID

Abstract

In the present work, for the first time, free vibration response of angle ply laminates with uncertainties is attempted using Multivariate Adaptive Regression Spline (MARS), Artificial Neural Network-Particle Swarm Optimization (ANN-PSO), Gaussian Process Regression (GPR), and Adaptive Network Fuzzy Inference System (ANFIS). The present approach employed 2D C0 stochastic finite element (FE) model based on the Third Order Shear Deformation Theory (TSDT) in conjunction with MARS, ANN-PSO, GPR, and ANFIS. The TSDT model used eliminates the requirement of shear correction factor owing to the consideration of the actual parabolic distribution of transverse shear stress. Zero transverse shear stress at the top and bottom of the plate is enforced to compute higher-order unknowns. C0 FE model makes it commercially viable. Stochastic FE analysis done with Monte Carlo Simulation (MCS) FORTRAN inhouse code, selection of design points using a random variable framework, and soft computing with MARS, ANN-PSO, GPR, and ANFIS is implemented using MATLAB in-house code. Following the random variable frame, design points were selected from the input data generated through Monte Carlo Simulation. A total of four-mode shapes are analyzed in the present study. The comparison study was done to compare present work with results in the literature and they were found in good agreement. The stochastic parameters are Young’s elastic modulus, shear modulus, and the Poisson ratio. Lognormal distribution of properties is assumed in the present work. The current soft computation models shrink the number of trials and were found computationally efficient as the MCS-based FE modelling. The paper presents a comparison of MARS, ANN-PSO, GPR, and ANFIS algorithm performance with the stochastic FE model based on TSDT.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3