Advanced Complex Analysis of the Thermal Softening of Nitrided Layers in Tools during Hot Die Forging

Author:

Krawczyk Jakub,Widomski PawełORCID,Kaszuba Marcin

Abstract

This article is devoted to the issues of thermal softening of materials in the surface layer of forging tools. The research covers numerical modeling of the forging process, laboratory tests of tempering of nitrided layers, and the analysis of tempering of the surface layer of tools in the actual forging process. Numerical modeling was supported by measuring the temperature inside the tools with a thermocouple inserted into the tool to measure the temperature as close to the surface as possible. The modeling results confirmed the possibility of tempering the die material. The results of laboratory tests made it possible to determine the influence of temperature on tempering at different surface layer depths. Numerical analysis and measurement of surface layer microhardness of tools revealed the destructive effect of temperature during forging on the tempering of the nitrided layer and on the material layers located deeper below the nitrided layer. The results have shown that in the hot forging processes carried out in accordance with the adopted technology, the surface layer of working tools is overheated locally to a temperature above 600 °C and tempering occurs. Moreover, overheating effects are visible, because the surface layer is tempered to a depth of 0.3 mm. Finally, such tempering processes lead to a decrease in the die hardness, which causes accelerated wear because of the abrasion and plastic deformation. The nitriding does not protect against the tempering phenomenon, but only delays the material softening process, because tempering occurs in the nitrided layer and in the layers deeper under the nitrided layer. Below the nitrided layer, tempering occurs relatively quickly and a soft layer is formed with a hardness below 400 HV.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3