The HPV16E7 Affibody as a Novel Potential Therapeutic Agent for Treating Cervical Cancer Is Likely Internalized through Dynamin and Caveolin-1 Dependent Endocytosis

Author:

Zhang Qingyuan,Zhu Hua,Cui Zhouying,Li Yuxiao,Zhuo Jiaying,Ye Jingwei,Zhang Zhihui,Lian Zheng,Du Qianqian,Zhao Kong-Nan,Zhang Lifang,Jiang PengfeiORCID

Abstract

Affibodies targeting intracellular proteins have a great potential to function as ideal therapeutic agents. However, little is known about how the affibodies enter target cells to interact with intracellular target proteins. We have previously developed the HPV16E7 affibody (ZHPV16E7384) for HPV16 positive cervical cancer treatment. Here, we explored the underlying mechanisms of ZHPV16E7384 and found that ZHPV16E7384 significantly inhibited the proliferation of target cells and induced a G1/S phase cell cycle arrest. Furthermore, ZHPV16E7384 treatment resulted in the upregulation of retinoblastoma protein (Rb) and downregulation of phosphorylated Rb (pRb), E2F1, cyclin D1, and CDK4 in the target cells. Moreover, treatment with dynamin or the caveolin-1 inhibitor not only significantly suppressed the internalization of ZHPV16E7384 into target cells but also reversed the regulation of cell cycle factors by ZHPV16E7384. Overall, these results indicate that ZHPV16E7384 was likely internalized specifically into target cells through dynamin- and caveolin-1 mediated endocytosis. ZHPV16E7384 induced the cell cycle arrest in the G1/S phase at least partially by interrupting HPV16E7 binding to and degrading Rb, subsequently leading to the downregulation of E2F1, cyclin D1, CDK4, and pRb, which ultimately inhibited target cell proliferation. These findings provide a rationale of using ZHPV16E7384 to conduct a clinical trial for target therapy in cervical cancer.

Funder

National Natural Science Foundation of China

Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3