AlGaN-Based 1.55 µm Phototransistor as a Crucial Building Block for Optical Computers

Author:

Hofstetter DanielORCID,Aku-Leh Cynthia,Beck Hans,Bour David P.

Abstract

An optically activated, enhancement mode heterostructure field effect transistor is proposed and analytically studied. A particular feature of this device is its gate region, which is made of a photovoltaic GaN/AlN-based superlattice detector for a wavelength of 1.55 µm. Since the inter-subband transition in this superlattice does normally not interact with TE-polarized (or vertically incoming) radiation, a metallic second-order diffraction grating on the transistor gate results in a re-orientation of the light into the horizontal direction—thus providing the desired TM-polarization. Upon illumination of this gate, efficient inter-subband absorption lifts electrons from the ground to the first excited quantized state. Due to partial screening of the strong internal polarization fields between GaN quantum wells and AlN barriers, this slightly diagonal transition generates an optical rectification voltage. Added to a constant electrical bias, this optically produced gate voltage leads to a noticeable increase of the transistor’s source-drain current. The magnitude of the bias voltage is chosen to result in maximal transconductance. Since such a phototransistor based on high-bandgap material is a device involving only fast majority carriers, very low dark and leakage currents are expected. The most important advantage of such a device, however, is the expected switching speed and, hence, its predicted use as an optical logic gate for photonic computing. In the absence of a p-n-junction and thus of both a carrier-induced space charge region, and the parasitic capacitances resulting thereof, operation frequencies of appropriately designed, sufficiently small phototransistors reaching 100 GHz are envisaged.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3