Flow Analysis of Hybridized Nanomaterial Liquid Flow in the Existence of Multiple Slips and Hall Current Effect over a Slendering Stretching Surface

Author:

Hou Enran,Wang FuzhangORCID,Khan Muhammad Naveed,Ahmad Shafiq,Rehman AyshaORCID,Almaliki Abdulrazak H.,Sherif El-Sayed M.ORCID,Galal Ahmed M.ORCID,Alqurashi Maram S.ORCID

Abstract

Carbon nanotubes (CNTs) are favored materials in the manufacture of electrochemical devices because of their mechanical and chemical stability, good thermal and electrical conductivities, physiochemical consistency, and featherweight. With such intriguing carbon nanotubes properties in mind, the current research aims to investigate the flow of hybridized nano liquid containing MWCNTs (multi-wall carbon nanotubes) and SWCNTs (single-wall carbon nanotubes) across a slendering surface in the presence of a gyrotactic-microorganism. The temperature and solutal energy equation are modified with the impact of the modified Fourier and Fick’s law, binary chemical reaction, viscous dissipation, and joule heating. The slip conditions are imposed on the surface boundaries. The flow equations are converted into ODEs by applying similarity variables. The bvp4c approach is applied to tackle the coupled and extremely nonlinear boundary value problem. The outputs are compared with the PCM (Parametric continuation method) to ensure that the results are accurate. The influence of involved characteristics on energy distribution, velocity profiles, concentration, and microorganism field are presented graphically. It is noted that the stronger values of the wall thickness parameter and the Hartmann number produce a retardation effect; as a result, the fluid velocity declines for MWCNT and SWCNT hybrid nano liquid. Furthermore, the transport of the mass and heat rate improves with a higher amount of both the hybrid and simple nanofluids. The amount of local skin friction and the motile density of microorganisms are discussed and tabulated. Furthermore, the findings are validated by comparing them to the published literature, which is a notable feature of the present results. In this aspect, venerable stability has been accomplished.

Funder

Taif University Researchers Supporting Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3