Author:
Wang Yang,Zhang Caoning,Xu Lingling
Abstract
In mass concrete, shrinkage resulting from temperature drop and drying leads to cracking, which can seriously affect the strength and durability of cement-based materials. Fortunately, expansion agents can deter or prevent these effects, especially MgO expansion agents (MEAs). In this study, the effects of four MEAs of different activity on the expansion properties, strength, and hydration of cement paste were explored. The different expansion phenomena between the high activity and low activity MgO was especially explained by the hydration model and dynamic theory. The results indicate that when the other conditions were the same, higher curing temperature and dosage could improve the expansion to some extent. Moreover, the hydration of high activity MgO and the expansion behavior occurred mainly in the early hydration stage, while the hydration of low activity MgO and the expansion behavior had a high contribution rate in the later stage, and the final expansion of cement mixed with low activity MgO was larger.
Funder
National Key Research and Development Plan of China
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Reference34 articles.
1. The Chemistry of Cement and Concrete;Lea,1971
2. History and Status of Performance Tests for Evaluation of Soundness of Cements;Mehta,1978
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献