Morphological: Optical, and Mechanical Characterizations of Non-Activated and Activated Nanocomposites of SG and MWCNTs

Author:

Alotaibi Mohammed S.,Almousa Norah H.,Asaker Mohammed A.,Alkasmoul Fahad S.,Khdary Nezar H.ORCID,Khayyat MahaORCID

Abstract

Nanocomposites of silica gel (SG) and multiwalled carbon nanotubes (MWCNTs) of relatively low concentrations (0.25, 0.50, and 0.75 wt%) were characterized before and after annealing. Adsorption is a surface phenomenon, and based on this, the morphology of the composites was investigated by scanning electron microscopy (SEM). The produced images show that the MWCNTs were embedded into the silica gel base material. Fourier transform infrared (FTIR) transmittance spectroscopy showed that MWCNTs were not functionalized within the matrix of silica gel and MWCNT composites. However, after annealing the composites at 400 °C for 4 h in air, evidence of activation was observed in the FTIR spectrum. The effects of the embedding of MWCNTs on porosity, specific surface area, and pore size distribution were studied using Raman spectroscopy. The Raman spectra of the prepared composites were mainly dominated by characteristic sharp scattering peaks of the silica gel at 480, 780, and 990 cm−1 and a broad band centered at 2100 cm−1. The scattering peaks of MWCNTs were not well pronounced, as the homogeneity of the composite is always questionable. Nanosizer analysis showed that at 0.25 wt%, the distribution of MWCNTs within the silica gel was optimal. Vickers hardness measurements showed that the hardness increased with the increasing weight percent of MWCNTs within the composite matrix, while annealing enhanced the mechanical properties of the composites. Further studies are required to investigate the pore structure of silica gel within the matrix of MWCNTs to be deployed for efficient cooling and water purification applications.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3