The Effect of Reaction Conditions and Presence of Magnesium on the Crystallization of Nickel Sulfate

Author:

Jenssen Ina BeateORCID,Bøckman Oluf,Andreassen Jens-Petter,Ucar SenizORCID

Abstract

Recycling of valuable metals such as nickel is instrumental to meet the need from the dramatic increase in electric vehicle battery production and to improve its sustainability. Nickel required in the battery manufacture can be recovered from the hydrometallurgical industrial process streams by crystallization of nickel sulfate. Here, crystallization of nickel sulfate is studied from an industrial point of view, investigating the effects of temperature, seeding and presence of magnesium on the formation of various solid phases for the evaluation of their potential influence on the process design. Results showed that the precipitating phase was dictated both by seed amount and reaction temperature. Transformation of metastable phases both in suspension and in a dry state was observed over time. Presence of magnesium was shown to promote formation of NiSO4·7H2O in solution and increased its stability in a dry form. In their dry state, nickel sulfate that was formed in the absence of magnesium transformed towards α-NiSO4·6H2O, whereas those precipitated in the presence of high magnesium concentrations transformed towards β-NiSO4·6H2O, indicating that magnesium inhibited the phase transformation towards α-NiSO4·6H2O. Knowledge about various solid phases of varying crystal morphology and stability can be used as input to decisions for the best suited solid product type and how this relates to the initial conditions of the sidestreams.

Funder

The Research Council of Norway

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3