Relationship between Structural Stiffness and Viscous Damping Coefficient in Reinforced Carbon Structure under Varying Carbon Fiber Angles

Author:

Kim Chan-JungORCID

Abstract

A linearized dynamic model of a carbon-fiber-reinforced plastic (CFRP) structure can be formulated using the structural stiffness and viscous damping coefficient. The carbon fiber angle is an influential factor in determining the structural stiffness of CFRP structures by serially combining the stiffness of a binding matrix and that of a carbon fiber. The viscous damping coefficient of the CFRP structure is also highly sensitive to the carbon fiber angle; that is, it assumes a parallel series between the damping coefficient of the binding matrix and that of the carbon fiber. In this study, a sensitivity formula was derived to obtain the ratio of two parameters—the structural stiffness, and the viscous damping coefficient—by dividing all parameters by the value of the reference angle. The CFRP structure was chosen for a simple rectangular specimen with five carbon fiber angles, ranging from 0° (reference) to 90°. The identified modal parameters were used from the impact modal test conducted in a previous study. Sensitivity analysis was conducted for both the structural stiffness and the viscous damping coefficient. The sensitivity results revealed that the sensitivity index of the viscous damping coefficient was proportional to that of the structural stiffness. Even a small value of the viscous damping coefficient of the carbon fiber was sensitive to the CFRP structure because the carbon-fiber damping coefficient was parallel to the large damping coefficient of the binding matrix.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference24 articles.

1. Composite Materials—Science and Engineering;Chawla,1987

2. Mechanical Behavior of Materials;Courtney,2000

3. Mechanics of Materials;Beer,2015

4. Experimental Study of Plasma Plume Analysis of Long Pulse Laser Irradiates CFRP and GFRP Composite Materials

5. Ultra-thin electrospun nanofibers for development of damage-tolerant composite laminates

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3