The Effects of Li+ Doping on Structure and Upconversion Luminescent Properties for Bi3.46Ho0.04Yb0.5Ti3O12: xLi Phosphors

Author:

Ren Feng,Zhou Jinlei,Wang Dengpeng,Wang Xianran,Gao FengORCID

Abstract

A series of novel Li+ doped Bi3.46Ho0.04Yb0.5Ti3O12 (BHYTO: xLi, 0 ≤ x ≤ 0.15) upconversion phosphors were prepared through a sol-gel-sintering method. There exist three emission bands centered at 545 nm, 658 nm, and 756 nm in the upconversion emission spectra at 980 nm excitation, corresponding to energy transitions of 5F4/5S2 → 5I8, 5F5 → 5I8 and 5F4/5S2 → 5I7 of Ho3+, and the upconversion emission intensity of BHYTO: 0.05Li is about 2.2 times stronger than that of BHYTO samples. The luminescent lifetime of the strongest emission (545 nm) is in the range of 45.25 to 65.99 μs for the different BHYTO: xLi phosphors. The energy transfers during the upconversion pumping process from Yb3+ to Ho3+ are mainly responsible for all the emissions, each belonging to a double-photon process. Li+ mainly entered into the interspace sites or occupied Bi3+ sites in Bi4Ti3O12 host during the fabrication process according to its dosage, and the possibility is very low for Li+ to take part in the energy transfer process directly due to its lack of matching levels with 4f of Ho3+ and Yb3+. However, Li+ doping can not only increase the size of crystal grains to improve crystallinity through XRD analysis, but also reduced oxygen vacancies to decrease the number of quenching centers through XPS analysis. The improved crystallinity and reduced quenching centers are proposed to be the main causes for the enhanced upconversion luminescence of the Li+ doped BHYTO phosphor.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3